1. In the accompanying diagram of right triangle ABC, BC = 12 and $m \angle C = 40$.

Which single function could be used to find AB?

a) tail 50 0) sin 50 c) cos 40 u)	sin 40
-----------------------------------	--------

2. In the diagram below of a unit circle, the ordered pair $\left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)$ represents the point where the terminal side of θ intersects the unit circle.

3. Circle *O* has its center at the origin, OB = 1, and $\overline{BA} \perp \overline{OA}$. If $m \angle BOA = \theta$, which line segment shown has a length equal to $\cos \theta$?

- 4. In a circle with a radius of 4 centimeters, what is the number of radians in a central angle that intercepts an arc of 24 centimeters?
- 5. Express $\frac{2\pi}{3}$ radians in degrees.
- 6. Express 240° in radian measure.
- 7. If $\sin \theta = 0.3347$, find the measure of positive acute angle θ to the *nearest minute*.
- 8. What is the value of $\cos(-240^{\circ})$?

a)
$$\frac{\sqrt{3}}{2}$$
 b) $-\frac{\sqrt{3}}{2}$ c) $\frac{1}{2}$ d) $-\frac{1}{2}$

9. The shaded portion of the accompanying map indicates areas of night, and the unshaded portion indicates areas of daylight at a particular moment in time.

Which type of function best represents the curve that divides the area of night from the area of daylight?

- a) quadratic b) cosine
- c) tangent d) logarithmic

10. Which equation is represented by the graph below?

a) $y = 2\cos 3x$ b) $y = 2\sin 3x$ c) $y = 2\cos \frac{2\pi}{3}x$ d) $y = 2\sin \frac{2\pi}{3}x$

- 11. In $\triangle PQR$, p equals
 - a) $\frac{r \sin P}{\sin Q}$ b) $\frac{r \sin P}{\sin R}$ c) $\frac{r \sin R}{\sin P}$ d) $\frac{q \sin R}{\sin Q}$
- 12. If $\tan A < 0$ and $\cos A > 0$, in which quadrant does $\angle A$ terminate?
 - a) I b) II c) III d) IV
- 13. If $\tan x = -\sqrt{3}$, in which quadrants could angle x terminate?
 - a) I and II b) II and III
 - c) II and IV d) III and IV
- 14. If $\sin \theta = -\frac{8}{17}$ and $\tan \theta$ is positive, what is the value of $\cos \theta$?
- 15. The value of $\cos 16^{\circ} \cos 164^{\circ} \sin 16^{\circ} \sin 164^{\circ}$ is
 - a) -1 b) $-\frac{1}{2}$ c) 0 d) $\frac{\sqrt{3}}{2}$
- 16. The expression $\cos(\pi x)$ is equivalent to
 - a) $\sin x$ b) $-\sin x$ c) $\cos x$ d) $-\cos x$
- 17. The expression $\frac{\sin^2 B}{\cos B} + \cos B$ is equivalent to
 - a) 1 b) $\frac{1}{\cos B}$ c) $\frac{1}{\sec B}$ d) $\sin^2 B$

page 2

- 18. The expression $\sin^2 x + \cos^2 x b^2$ is equivalent to
 - a) 1 b) b^2
 - c) (1+b)(1-b) d) $\sin x \cos x b$
- 19. A wave displayed by an oscilloscope is represented by the equation $y = 3 \sin x$. What is the period of this function?
 - a) 2π b) 2 c) 3 d) 3π
- 20. Which graph represents the reflection of $y = \cos x$ in the y-axis?

- 21. If $sin(x + 20^\circ) = cos x$, the value of x is
 - a) 35° b) 45° c) 55° d) 70°
- 22. Find, to the *nearest ten minutes* or *nearest tenth of a degree*, all values of x in the interval $0^{\circ} \le x < 360^{\circ}$ that satisfy the equation $4 \cos 2x 2 \cos x + 3 = 0$.
- 23. What is the total number of distinct triangles that can be constructed if AC = 13, BC = 8, and $m \angle A = 36$?
 - a) 1 b) 2 c) 3 d) 0

- 24. In $\triangle ABC$, $\cos C = -0.2$, a = 8, and b = 10. Find the length of side c.
- 25. The building lot shown in the accompanying diagram is shaped like an isosceles triangle with AB = AC and $m\angle BAC = 53^{\circ} 10'$. The area of the lot is one acre. Find the lengths of *each* of the three sides to the *nearest foot*. [One acre = 43,560 ft²] [Show or explain the procedure used to obtain your answer.]

26. A ski lift begins at ground level 0.75 mile from the base of a mountain whose face has a 50° angle of elevation, as shown in the accompanying diagram. The ski lift ascends in a straight line at an angle of 20° . Find the length of the ski lift from the beginning of the ski lift to the top of the mountain, to the *nearest hundredth of a mile*.

27. In the right triangle shown below, what is the measure of angle *S*, to the *nearest minute*?

page 3